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Studying the dynamics of plasma blobs moving in a magnetic field is of interest for the 
solution of a number of problems in astrophysics [i] and geophysics [2, 3], as well as for 
interpreting experiments with a laboratory plasma [4-6]. 

Many authors have considered the problem of the dispersal of a plasma cloud in a magnet- 
ic field (see, e.g., [7-13]). To summarize their results, it can be concluded that fairly 
complete concepts have now been developed about the nature of the motion of plasma blobs in 
a magnetic field. A combined kinetic and hydrodynamic model, leading to cumbersome numeri- 
cal calculations, has been used in a number of papers [ii, 12]. The important question of 
the instabilities that characterize the dynamics of a plasma cloud in a magnetic field re- 
mains insufficiently studied, since its analysis is associated with further complication of 
the mathematical model. The main results on the development of magnetohydrodynamic (MHD) 
instabilities have been obtained, as a rule, from the analysis of dispersion relations (see 
[14]). 

The present paper has the aim of formulating a model of the dynamics of a plasma cloud 
in a magnetic field that is fairly simple for mathematical analysis, on the one hand, and 
complete enough that features of the development of MHD instabilities of the cloud surface 
can be described within its framework, on the other. The model of a plasma cloud, filled 
with a weakly inhomogeneous, collisionless, magnetized plasma, is used here. To describe 
the plasma we use the Chu-Goldberger-Low (CGL) model [14] with allowance for corrections 
associated with the finite Larmor radius of the ions, leading to the appearance of viscosity 
in the equations [15]. The boundary of the plasma cloud is described mathematically as a 
discontinuity in the fields and plasma parameters. The problem of the boundary's motion can 
be formulated so that only parameters characterizing the boundary itself appear in it. This 
enables us to use the method of contour dynamics to describe the instability of the boundary 
between plasma and vacuum when the :surface is curved. The corresponding instability is 
called a flute or transposition instability; the conditions under which it develops have 
been analyzed in [16]. Allowance for gyroviscosity has made it possible to explain the ex- 
perimentally observed spatial spectrum of surface instabilities of a plasma blob, and has 
established that the flutings travel along the plasma surface across the magnetic field. 

i. Equations. The plasma is described in the CGL approximation by the system of equa- 
tions [14] 

dp d P• d P r; B~ 
d~ + p div Y = O, d t p B  - -  O, d~ p ~ :  O, 

( 1 . 1 )  

dV div P + l P at T ( j •  T ( V •  

where p i s  t he  p lasma d e n s i t y ;  P i s  t he  p r e s s u r e  t e n s o r ,  and components  o f  which depend on 
Pi  and Pfl, which c h a r a c t e r i z e  t h e  p lasma p r e s s u r e  a c r o s s  and a l o n g  t he  m a g n e t i c  f i e l d .  

The e l e c t r i c  and m a g n e t i c  f i e l d s  E and B a r e  d e t e r m i n e d  from t h e  s o l u t i o n  o f  t h e  Max- 
w e l l  e q u a t i o n s  f o r  a q u a s i - n e u t r a l  p l a sma:  

curl B 4~ . t dB div B 0, div E 0. = ~ ] ,  curl E - -  c Ot ' = : ( 1 . 2 )  
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To investigate the instability of the boundary of a magnetized plasma, one must inte- 
grate Eqs. (i.i) and (1.2) in the cloud with a free surface. Since such a problem is ex- 
tremely complicated, it is expedient to adopt a number of simplifying assumptions. 

First, to study the evolution of flute perturbations, we confine ourselves to consider- 
ing the central cross section of the cloud, transverse to the external magnetic field (Fig. 
i). The three-dimensional problem then reduces to a planar one. Assuming the cloud to be 
symmetric relative to the central cross section, we note that the external field B0 and the 
field B within the plasma are orthogonal to the plane of the cross section. For the current 
and the velocity of particles lying in the plane under consideration we then find, from the 
last equations of system (i.i), 

( dV ) c (E• ] = ~ - 2 B •  9--~- + d i v P ,  V---- ~-~ (1.3) 

We resolve the magnetic field in the plasma into a constant and uniform part B I and a 
variable correction B I' Substituting B----B, + B'I into the first equation of (1.2) and using 
the expression from (1.3) for the current, we easily show that the correction Bz' is small 
compared with BI if the particle drift velocity V is considerably lower than the Alfven ve- 

locity V a = B/4v~p and the pressure of the plasma particles is considerably lower than the 
magnetic pressure. Since these conditions are typical of a late stage of dispersal, we as- 
sume the magnetic field inside the plasma to be constant. The jump in the field at the sur- 
face of the cloud (the transition from B 0 to B I) is determined by the surface current flow- 
ing along the loop L bounding the central cross section, while the volume currents distort 
the magnetic field B, little. 

The assumption that the field is constant means that the equalities curl B = 0 and curl 
E = 0 are satisfied inside the loop, which entails the condition of incompressibility (div 
V = 0) for the plasma. Then assuming that p, Pl, and Pll are initially constant in the 
cloud's central cross section, from Eqs. (i.i) we find that they also remain constant over 
all subsequent time intervals. These facts stimulate further simplification of the problem's 
formulation: Equations are derived for the evolution of the loop L as a mathematical sur- 
face of discontinuity in fields and plasma parameters. The problem of the boundary's posi- 
tion can be formulated so that only parameters characterizing the boundary itself appear in 
it. This enables one to reduce the analysis of the development of instability of the sur- 
face of a plasma cloud to the solution of a one-dimensional, nonsteady problem. 

The motion of the boundary of the central cross section is defined if at each point on 
it one knows the normal velocity D, which coincides with the component of V n of the drift 
velocity normal to the boundary: 

D = - - e E ~ B I .  (1.4) 

Hence, it follows that the problem consists in finding the components E~ and E n of the elec- 
tric field that are induced by the boundary's motion and depend on the buildup of surface 
charge on it (the subscripts n and ~ mark projections onto the outward normal and tangent 
to the boundary L of the central cross section). 

Let the jump [B] = B 0 - B1 in magnetic field strength be given at L and let there be 
a surface charge o. The electric field [17] will then undergo a discontinuity at the contour, 

[E~] = - -  De -~ [B], [E,~] = 4a~,  IE~] - -  E ~  - -  ET,  [E,~] = E $  - -  E $ ,  

where the + (-) sign marks the region external (internal) to the loop L. We represent the 
field as a superposition E ~ �9 ~ �9 of the vortical and polarization fields, for which we 
have 

c u r l  ~ O, div ~ = O, cu r l  �9 ~ O, d i v r  = 0 

o u t s i d e  t h e  b o u n d a r y  a n d  

( i .5)  

[~x] = --Dc-I[B], [~1 = 0, [O~l = 0, [~l =4gq (1.6) 

at the boundary. 

We introduce the stream function ~ and the potential ~: W =--b x grad~, �9 = --grad % 
b = B/B, from which, using (1.5) and by virtue of the flow's two-dimensionality, we have 
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Since we have 

A,p = o, ~x~ = o. ( 1 . 7 )  

~tr~ - -  an  ' Ox ' aT ' - -  - ~ "  (1.s) 

from (1.6) we obtain the conditions for the functions ~ and ~ at the boundary L: 

[+1 ~ ~ [+] [+] -b~ = - - T I B ] '  -g+-T = 0 '  -grin = - - 4 ~ '  ~ = 0 .  ( 1 . 9 )  

We have  t h u s  f o r m u l a t e d  t h e  p r o b l e m s  ( 1 . 7 )  and ( 1 . 9 )  on c o n j u g a t i o n  a t  L o f  h a r m o n i c  f u n c -  
t i o n s  with a continuous tangential normal derivative and one that undergoes a specific dis- 
continuity. We write the conditions for these problems to be solvable for sufficiently 
smooth L in the form 

~ l)ds = O, ~ ods = O. ( 1 . 1 0 )  
L g 

We seek solutions to the problems (1.7) and (1.9) in the form of the logarithmic poten- 
tial of a simple layer with density ~ (s' is the natural parameter of the curve and r' is 
the vector corresponding to the point s'): 

Q ( r ) = @ , t ( r ' ) l n @ d s ' , & = - [ r ' - - r l .  

L 

We write the well-known [18] expressions for the boundary values of the normal derive= 
tive of the potential Q: 

_ _  -- + 
COS aQ + (r) a~ (r) + ~ ~ (r') ~ de 

011 

(1.11) 
COS 

aO- (r) a U (r) + ~ (r') - 7 7 -  ds' 
an 

L 

(a  is the angle between the vectors r'--r and n). We then have 

[OQ/On ] = - 2 a t x .  ( 1 . 1 2  ) 

The derivative 8Q/ST along the direction tangent to the boundary is continuous, according 
to [18] (6 is the angle between r'--r and Q: 

cos ~ ds'. 
aQ(r) _ .7 p(r')~ (1.13) U% 

L 

The conditions (1.12) and (1.13) are consistent with (1.9) for ~ = D[B]/(2~c) and gr = 20. 

Using these relations for the density of "sources" producing the fields IF and (D,, and us- 
ing Eqs. (1.8), (I.ii), and (1.13), we find the components of the field E at the boundary as 
it is approached from the plasma side: 

cos o~ , (~ cos [~ 
E ~  ~- ~D[B] + 2ac[B] ;I ~ D - T K - d s  --2 o ~ r - - w g - d s "  

L L 
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E~ = : - - 2 ~ o - -  2 - ~  c �9 ----u-ds' --2 o----~- ds'. ( 1 . 1 4 )  
L L 

E q u a t i o n  ( 1 . 4 )  s u p p l e m e n t s  Eqs.  ( 1 . 1 4 )  by r e l a t i n g  Ex w i t h  D. To c l o s e  t h e  s y s t e m  of  e q u a -  
t i o n s ,  we must  e x p r e s s  t h e  c h a r g e  o in  t e r m s  of  t h e  componen t s  of  t h e  f i e l d  E. We u s e  t h e  
e q u a t i o n  of  c h a r g e  c o n s e r v a t i o n  

o ~ / o t  = ]~, (i .  15) 
c o n n e c t i n g  t h e  s u r f a c e  c h a r g e  d e n s i t y  w i t h  t h e  n o r m a l  component  Jn  o f  t h e  c u r r e n t  t o  t h e  
b o u n d a r y .  We f i n d  t h e  e x p r e s s i o n  f o r  Jn  f rom Eq. ( 1 . 3 ) ,  w r i t t e n  a t  t h e  b o u n d a r y  of  t h e  
c l o u d ' s  c e n t r a l  c r o s s  s e c t i o n  in  p r o j e c t i o n  o n t o  t h e  no rma l  t o  t h e  l oop  L. S u b s t i t u t i n g  t h e  
result obtained with allowance for the uniformity of the distribution of plasma parameters 
within the cloud into Eq. (1.15), we find 

ao c e #E~- c (div P)~, 
-- p c-y/--+ ~ ot B~ 

which s u p p l e m e n t s  Eqs.  ( 1 . 4 )  and ( 1 . 1 4 )  to  c l o s e  t h e  s y s t e m .  

We e l i m i n a t e  E n and E~ f rom t h i s  s y s t e m ,  u s e  t h e  f a c t  t h a t  Va /c  << 1, and r e p l a c e  o by 
t h e  new v a r i a b l e  E = 4~co / (B0  + Bz) .  The r e s u l t  i s  a s y s t e m  o f  e q u a t i o n s  f o r  t h e  two un-  
knowns D and ~: 

- - [BI  D c ~  ds'+ E ~ a s ,  
D (t, r) = :~ (B ~ + BI ) L 6r L 

{ ~ ~ .~) r ( 1 . 1 6 )  0E(t,r) 2Bl(divP)~ ~ 0 [B] _ D ds' s ~--67-r "l" 
0-""-'t~ = 9 (B o "+- B1) n r)t BO ~- B1 L L 

If we know (div P)~ at the boundary, we can determine D(t, r) and hence describe the 
evolution of L. In general, we have (see [14]) 

(div P)~ = {grad p~ -i- (p;~ - -  p J ( b  grad)b}x. ( 1 . 1 7 )  

The r e l a t i o n s h i p  be t ween  g r a d  P i  and t h e  c u r v a t u r e  v e c t o r  (b grad)b a t  t h e  p l a s m a  boun d a ry  
can be found  f rom t h e  c o n d i t i o n  t h a t  t h e  n o r m a l  component  o f  t h e  m a g n e t i z a t i o n  c u r r e n t  v a n -  
i s h  a t  i t  [ 1 9 ] .  S i n c e  P l / B  2 << 1, f o r  t h e  c e n t r a l  c r o s s  s e c t i o n  of  t h e  c l o u d  we have  

(Jm)i = --ccurl(p• -- --cb/B • {2p~(b grad)b - -  grad p• 

D e t e r m i n i n g  (3m)n f rom t h i s ,  e q u a t i n g  i t  t o  z e r o ,  and u s i n g  ( 1 . 1 7 ) ,  we f i n a l l y  d e t e r m i n e  
t h a t  a t  t h e  b o u n d a r y  we h a v e  

(div P)~ = {(p• @ pll)(b grad)b}~. ( 1 . 1 8 )  

2. V i s c o s i t y .  The e x i s t e n c e  of  s o l u t i o n s  o f  t h e  t y p e  e x p ( - - i ~ t + i k r ) ,  w i t h  t h e  i n s t a b i l -  
i t y  i n c r e m e n t  ~ = Im(~)  i n c r e a s i n g  w i t h o u t  l i m i t  as t h e  wave number k i n c r e a s e s ,  ha s  been  
found  in  t h e  a n a l y s i s  o f  p l a s m a  i n s t a b i l i t y  b a s e d  on t h e  CGL a p p r o x i m a t i o n  [ 1 4 ] .  The d e p a r -  
t u r e s  o f  t h e  p r o p e r t i e s  of  t h e  p l a s m a  f rom t h o s e  o f  i t s  MHD model  become r e a l l y  s i g n i f i c a n t  
a t  l a r g e  k. The main c a u s e  o f  such  d e p a r t u r e s  i s  o b v i o u s :  t h e  f i n i t e  Larmor  r a d i u s  R i o f  
t h e  i o n s .  

As shown in  [ 1 5 ] ,  a l l o w a n c e  f o r  t h e  f i n i t e n e s s  o f  R i in  t h e  CGL model  l e a d s  t o  a r e p r e -  
s e n t a t i o n  o f  t h e  p r e s s u r e  t e n s o r  in  t h e  fo rm P = p § q, where  t h e  t e n s o r  p c o r r e s p o n d s  t o  
t h e  a n i s o t r o p i c  p r e s s u r e  in  t h e  p l a s m a  w h i l e  t h e  t e n s o r  q c h a r a c t e r i z e s  v i s c o u s  c o r r e c t i o n s  
o f  o r d e r  1 /~  i ( z i  i s  t h e  ion  c y c l o t r o n  f r e q u e n c y ) .  A g e n e r a l  e x p r e s s i o n  f o r  q has  been  ob-  
t a i n e d  in  [ 2 0 ] .  S i n c e  t h e  l i n e s  of  t h e  e x t e r n a l  m a g n e t i c  f i e l d ,  d i s p l a c e d  by t h e  p l a s m a ,  
have  a c o n s t a n t  r a d i u s  o f  c u r v a t u r e  Rb, and n e g l e c t i n g  t e r m s  o f  o r d e r  1 / (w iR  b) and 1/Rb 2 we 
can u s e  ( 1 . 1 8 )  t o  o b t a i n  f rom [20] an e x p r e s s i o n  f o r  (div P)~ = (div q)x + (div P)T a t  t h e  bound-  
a r y  o f  t h e  c l o u d ' s  c e n t r a l  c r o s s  s e c t i o n :  

(div P)~ P• O~D P~ ~ Pll cos ~. 
2~ i 0s ~ ~ (2.1) 

Here  n i s  t h e  a n g l e  be t ween  t h e  r a d i u s  v e c t o r  r, drawn f rom t h e  c l o u d ' s  a x i s  t oward  some 
p o i n t  o f  t h e  l o o p  L, and t h e  t a n g e n t  v e c t o r  T a t  t h e  same p o i n t .  S u b s t i t u t i n g  ( 2 . 1 )  i n t o  
( 1 . 1 5 )  c o m p l e t e s  t h e  d e r i v a t i o n  o f  t h e  c l o s e d  s y s t e m .  
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3. Model Problem. Let us consider a flute instability of a surface, curved along the 
field, that is confined to the part of space filled with plasma (Fig. 2). Let the magnetic 
flux lines have a constant radius of curvature Rb, let the vectors B0 and B~ be collinear, 
and let a discontinuity [B] = B 0 - B z be specified at the surface. 

At the intersection of space with the plane orthogonal to the magnetic flux lines, the 
infinitely extended boundary L separating plasma and vacuum starts to deform under the influ- 
ence of the drift of charged particles. In the Cartesian coordinate system with the x axis 
along the unperturbed boundary, the curve L will be described by the equation y =Y(t, x). 
The velocity of the boundary's motion along the normal is defined by 

at I + -$f �9 (3.1) 

Let us consider small perturbations y = Y(t, x) of the boundary. Assuming Y, 8u 
BY/at, Z, a~/at, and Y(t, x') -Y(t, x) to be of first-order smallness, and neglecting their 
squares and products, from (1.16), (2.1), and (3.1) we obtain the linearized system of equa- 
tions 

+oo 

aY i f E( t ,x ' )  dx' G =  p~! § Pa 
Ot --~ x" -- x '  pR b 2pmi 

~ r o o  

where  t h e  p a r a m e t e r s  G and ~ have  t h e  d i m e n s i o n s  o f  a c c e l e r a t i o n  and v i s c o s i t y .  

From the system's second equation, it follows that the function ~Y/at is conjugate to 
7 with respect to a Hi!bert transform with a Cauchy kernel [21]. Using the inverse trans- 
form, we can express the integral on the right side of the first equation in terms of the 
function 7. After simple manipulations, we have 

ar 1 i = - - G A Y  a~Y 
- -  , - :c' --  z ' at az V ~ata.S ( 3 . 2 )  

~ o o  

The stability of the system (3.2) against perturbations of the type exp(-i~t + ikx) is de- 
termined by the dispersion relation 

~ + vk~@Gk = O. (3.3) 

It is easy to see that for v = 0 the system is unstable~ with the instability increment 
y(k) increasing without limit as th~ wave number grows. For v ~ 0, perturbations grow only 
for 0 < k < k0, where k 0 = (4G/v2)z/3. The increment reaches its maximum y, =J~/2(G2/v)17 3 
at k = (G/~2) z/3. Allowance for gyroviscosity thus leads to stabilization of short-wave- 
length modes. Perturbations grow in a wavelength range considerably exceeding the Larmor 
radius, 

~ >~0 = n/ko = u{v~/(4G)}w3 _~ R~(Rb/R i ) I /3>)  R i ,  

which indicates the applicability of the above approach to instability analysis. We should 
note that the solution to Eq. (3.3) also has a real part that depends on k. This leads to 
the effect of wave propagation of the initial perturbations, which is also determined by 
the presence of gyroviscosity. Long-wavelength perturbations travel with phase velocity 
- ~ k / 2 .  

Let us consider flute perturbations of the "wave packet" type: 

Y ( t  == O, x) == Yo/{t ~- (X, Xo)2}, E(t = O, x) -- O. ( 3 . 4 )  

For ~ = 0 the problem (3.2), (3.4) can be solved using a Fourier integral transform 

Y (t, x) ,= roxo ,I exp (-- kxo) ch (t ] , f~")  cos (kx) dk. ( 3 . 5  ) 
0 

For large x we can obtain the asymptotic form of the solution: 
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At x = 0 the integral (3.5) can be calculated: 

1 Y ( t , x = O ) -  Yol-" T -  V 7ooexp~ 4x~ ~ 2 ] / ~ ]  + I . ( 3 . 6 )  

One can see from (3.6) that the flute perturbation (3.4) develops considerably faster than 
a sinusoidal perturbation and the amplitUde buildup accelerates with decreasing pulse width 

X 0 �9 

We introduce the scales of length Y0, time /Y0/G, and charge /~0G. The problem (3.2), 
(3.4) in dimensionless variables takes the form 

or ~ ~ ~ '  Y ( t - =  O, z) = i a t -  ~ E ( t ' z ' ) ~ ' - x '  (i+x~) - - - - ~ '  
-~ ( 3 . 7 )  

aE ar t o3Y Z (I = O, z) = O, 
0-7- = a s  Re a t a x  "2 ' 

where Re = Yo Y4~oG/v is the analog of the Reynolds number; d = Y0/x0 is the "quality" of the 
initial pulse. 

Equation (3.5) can be transformed similarly; the results of a calculation based on it 
for d = i are given in Fig. 3. Curves I and 2 correspond to the boundary's position at t = 
0 and 2. A pattern of development of the instability that is symmetric with respect to the 
x axis is observed. It is seen that a negative phase develops at a certain time; the cal- 
culation agrees well with the asymptotics. 

For v ~ 0, the problem (3.7) is investigated by the finite-difference method [22]. The 
calculated results are also given in Fig. 3, in which it is shown, for Re = 2 and d = i, how 
the plasma boundary deforms by t = 2 (curve 3). Allowance for gyroviscosity leads to inter- 
esting effects. It is seen that the perturbation amplitude does not grow as rapidly as in 
its absence (see for curve 2), with the axis of greatest growth of the perturbation shift- 
ing leftward from its initial position. A negative phase develops along with the positive 
one, as before, but the wave structure loses symmetry. The process of charge separation at 
the plasma boundary is illustrated in Fig. 3 (~ ~ 0, curve 4), from the initial time, when 
X = 0, to the time t = 2. It is seen that the positive and negative charges are concentrat- 
ed on different slopes of the hills and valleys formed at the boundary. The local electric 
field generated in the process stimulates the instability's development. 

We note one other fact. Calculations of (3.7) with Re fixed and d varied showed that 
a certain "quality" of the initial pulse (3.4) exists for which the amplitude of the per- 
turbation grows at the highest rate. This accords with the fact that a wavelength of a 
sinusoidal perturbation I, exists that corresponds to the largest growth increment. 

4. ,,,,, Evolution of the Boundary of the Central Cross . Section of a Spindle-Shaped Cloud. 
Let the loop L be given by the equation r = R(t, e) in polar coordinates r, 0 (see Fig. I). 
Since 

oR [m "oR 
D : = T f  I + \ ~ - - ~ ]  ) , ao ( -"  

f r o m  ( 1 . 1 6 )  and  ( 2 . 1 )  we o b t a i n  a l i n e a r i z e d  s y s t e m  o f  e q u a t i o n s  f o r  t h e  s m a l l  q u a n t i t i e s  
R 1 and  E 1 (R = Ro + Rx, Z = E l ) :  

ORI ' B~ -- Bl ff ' ~ dO -~- -~t y ~ 0' -- 0 --~, 
-- 2.; 1 cot T aO , 

at 2~ o -~- Bl o 
=:~ (4.1) 

as1_  - I o> Z,dO__Bo+ at ,2~ a, B cot ) dO' -- 
" 0  - 0  

2B 1 [ G 0 R  1 OZlll 
1 B 1 (t, O) = B~ (t, 2n), E 1 (t, O) = ~'1 (t, 2n). 

~2 
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Using the formula for inverting a Hilbert transform [21] and the solvability conditions 
(i. I0), from the first equation of (4.1) we find 

2~ 

i 0 R  1 ' 0 
E1 = - -  ~ ,  ~ c o t - - - ~ - -  dO'. ( 4 .2 ) 

o 

Introducing the scales of length R0 and time (Re/G) I/2 and using (4.2), we can rewrite the 
system (4.1) in the dimensionless form 

dt  2 ~ ,  ' ~-7- = ~0 Re OtOO 2" ( 4 . 3  ) 
O 

It is easy t o  write the dispersion relation for the system (4.3) 

~)2+o)k2/Re+k=O, ~ = = w + i ? ,  k ~ Z ,  

u . . . .  k~/(2 He), ~ = (k - -  a,2)1]2 k ,  = Re2/s (4.4) 

and its exact solution for a sinusoidal initial perturbation: 

R1 = A exp (~t) cos (wt -- kO), s in  ~ = - - w / l ~ l ,  ( 4 . 5 )  

E1 = A j~J exp  (?t) s in  (wt - -  k0 -~ e), cos e = - - ? / j ~ ] .  

The development of a periodic system of planar jets at the boundary of the plasma blob 
is observed in accordance with (4.5). The pattern of charge distribution is noticeably 
phase-shifted. The entire configuration rotates counterclockwise (if viewed from the end 
of the B vector) an angular velocity w/k = -0.5k/Re. A numerical calculation of (4.3) for 
A = 0.i and Re = i0 (k, = ~) shows good agreement with (4.5) [22]. 

Let us consider the evolution of a single fluting, defined initially by the equations 

H~ = A,/{~ + (0/%)~}, Z~ = O, ( 4 . 6 )  

where the parameter 80 characterizes the "quality" of the pulse. In Fig. 4 we show the re- 
sults of a numerical solution of the system (4.3) for Re = !0, A = 0.I, and 00 = 3v/40. The 
circle 1 corresponds to the unperturbed boundary, curve 2 to the initial perturbation, and 
3 to the deformation of the surface [the function R(8)] at t = 2. The perturbation is seen 
to evolve in accordance with previously established laws. The positive phase develops rap- 
idly with the formation of a planar jet; a negative phase appears that is absent from the 
initial profile. Curve 6 was constructed from the function E(e) at t = 2. The points on 
the curve corresponding to positive (negative) charge were offset from the circle 1 on the 
outer (inner) parts of straight lines e = const. Charge separation at the surface occurs so 
that opposite charges are concentrated on different slopes of hills and valleys. The result- 
ing local electric field (shown by arrows) contributes to further development of the insta- 
bility. It should be noted that the fluting, deforming with time, travels counterclockwise 
as seen from the end of the B vector. 
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In Fig. 5 we give the results of a calculation of several versions of the development 
of the perturbation (4.6), differing in the value of 80. The positions of the boundary are 
shown at t = 2. The lines 1-3 correspond to 8 o = h, 2h, 6h (h = ~/32). The calculations 
demonstrate the selective nature of development of an instability that appears with allow- 
ance for gyroviscosity. It is seen that the perturbation corresponding to %0 = 2h develops 
most intensively. The configuration corresponding to the fastest growing perturbation mode 
usually occurs in practice. 

5. Comparison with Experiment. Let us consider experimental data [4] on surface in- 
stability of a laboratory plasma expanding in a magnetic field. The plasma cloud was photo- 
graphed at a rate -i frame/~sec as it dispersed. The plasma temperature was i0 eV, the 
cloud's total mass was in the range 10-7-10 -6 g (101s-1016 Cu atoms), and its characteris- 
tic size was 3 cm. For a collision cross section 10 -16 cm 2 (the Coulomb cross section is 
close to the gas-kinetic cross section at this temperature), the particle mean free path is 
102 cm. At a magnetic induction B = 0.77 T, the Larmor radius reached -0.5 cm. It is seen 
that the experiment can be described within the framework of the model of a collisionless 
plasma with allowance for gyroviscosity that has been adopted here. 

Let us estimate the Reynolds number for these parameters: 

v '  - 

In accordance with (4.4), the wave number corresponding to the highest growth rate is 
-6-7. About that many flutings are indeed observed in the photographs in [4] (Fig. 6). 
Analyzing the sequence of cloud photographs (corresponding to 9, 12, and 13 ~sec after the 
onset of dispersal), one can note the migration of flutings over its surface across the 
magnetic field. The fluting migration obeys the rule established above. 
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